
Popcorn Project:

Starting with Popcorn OS

Antonio Barbalace
antoniob@vt.edu

Systems Software Research Group at Virginia Tech

http://ssrg.ece.vt.edu

VTLUUG meeting , May 2nd 2013

2

Patches 14th Dec 2012

• Popcorn Hacking Guide
– Generic modifications (all archs)

• linux-3.2.14-popcorn-build.patch

• linux-3.2.14-popcorn-syscall.patch

• linux-3.2.14-popcorn-generic.patch

– Architecture dependent in arch/x86
• linux-3.2.14-popcorn-x86-build.patch

• linux-3.2.14-popcorn-x86-syscall.patch

• linux-3.2.14-popcorn-x86-generic.patch

• linux-3.2.14-popcorn-x86-apic.patch

• linux-3.2.14-popcorn-x86-boot.patch

• linux-3.2.14-popcorn-x86-vty.patch

– Drivers modifications (all archs) in drivers/
• linux-3.2.14-popcorn-drivers-vty.patch

• linux-3.2.14-popcorn-drivers-acpi.patch

• linux-3.2.14-popcorn-drivers-gpu.patch

• linux-3.2.14-popcorn-drivers-pci.patch

• Goal
– Release a first usable version of the project (alternative to virtual machines)

– Document the project

– Attract contributors and enthusiasts

– Separate the architecture dependent code (initial porting guide)

3

Patches 25th Mar 2013

• Goal
– Release a new usable version of the project (replicated-kernel)

– Add new components
• Inter-Kernel Messaging layer

• Remote process creation and migration

• Other improvements and fixes

4

GIT Repositories

• Hosted on TO BE ANNOUNCED
– Publicly browseable, direct r/w access is protected (ssh key required)

• Kernel code
– TO BE ANNOUNCED

– many different branches
• davek – process/thread remote creation, migration

• net_msg_integration – fast software network switch

• shmem_tuntap – software network switch using TUN/TAP

• bshelton_messaging – inter-kernel messaging layer

• andy_fd_aware – NUMA aware scheduling

• andy_load_balance – again, NUMA aware scheduling

• mklinux-readonly – one page table per NUMA-node

• etc.

• Utils package
– TO BE ANNOUNCED

• Kexec repository
– TO BE ANNOUNCED

5

Before Booting Popcorn OS

1. Start your machine with any Linux kernel with NUMA
enabled

2. Download, compile and install a Popcorn kernel

3. Download, compile and install Popcorn’s kexec utility

4. Download, compile and install the Popcorn utils package

5. Create a ramdisk image for the secondary kernels

6. Create the resource partition or cluster configurations

7. Copy and paste the primary kernel configuration to the
boot loader (or take note of it)

8. Reboot!

6

Booting Popcorn OS

1. At the boot loader select the Popcorn kernel

2. Add the generated (slide 5 step 6) kernel command line

parameters (if not added before)

3. When the Linux kernel is up and running, login as root

4. Use one of the scripts (in Popcorn utils) to load other

kernel instances (secondary kernels)

5. The kernels will automatically and transparently form a

single OS (this functionality can be disabled)

7

SMP Linux Boot Image (bzImage)

• x86_64 uses bzImage (default)

• the boot format is discussed in
detail in
Documentation/x86/boot.txt

• bzImage is made up of
– a compressed and stripped

version of vmlinux

– that is accompanied by real-
mode code for relocation and
decompression

8

Popcorn Boot Images

• The primary Popcorn kernel boots
from a conventional bzImage

• Secondary Popcorn kernels boot
up from vmlinux.elf

– decompression is not required,
i.e. faster startup

9

Secondary Kernels – Strategy Overview

• Use kexec to put the kernel image in the

correct place in the physical memory (and

start the boot process)

• Modify the Linux SMP boot trampoline to

launch secondary kernels

• Adapt the existing Linux infrastructure to

provide basic OS services in a replicated-

kernel environment

10

SMP Linux Boot Process (x86)

• In a multiprocessor (multi-
core) x86 box there is

– a Bootstrap Processor (BSP)

– all other processors are
Application Processors (AP)

• The BSP is the one that
executes the BIOS code

• The BSP has to bring up all
the APs

From Intel “MulitProcessor Specification”, 1997

11

Primary and Secondary Kernels

• The Primary kernel is the kernel that boots on the
bootstrap processor (i.e. the first kernel to boot)

• Any other kernel that boots is called a Secondary Kernel

• We redefine the names in order to extend the BSP/AP
processors nomenclature from the Intel specifications
to kernels in a heterogeneous ISA setting

12

Fixes in arch/x86/kernel/head_64.S

13

SMP Linux AP Boot Process

The content of this slide is taken from Ben Shelton’s MS Thesis

14

Secondary Kernels Booting (script)

• Due to not being fully integrated with kexec, the

x86_64 version requires multiple loading steps

15

Secondary Kernels Booting (cmdline)

• earlyprintk=ttyS0,115200
• console=ttyS0,115200
• acpi_irq_nobalance
• no_ipi_broadcast
• lapic_timer=1000000
• pci_dev_flags=0x8086:0x10c9:b,0x102b:0x0532:b,0x1002:0x5a10:b,0x1002:0x4390:b,0x1002:

0x4396:b,0x1002:0x4397:b,0x1002:0x4398:b,0x1002:0x4399:b
• mklinux
• debug
• vty_offset=0x1fac000000
• present_mask=2
• memmap=1920M@4608M memmap=4592M$16M mem=6528M

In this example the kernel will be loaded on core 2

16

Secondary Kernels Boot Process

• The kernel binary is copied to the
selected physical location

• The boot ramdisk is copied to the
designated kernel's memory area

• The secondary kernel's
boot_params are initialized with
the appropriate kernel arguments
and ramdisk location/size

• A syscall to boot the secondary
kernel is made, this sets the CPU's
initial instruction pointer to point
to the multi-kernel trampoline
and will send an inter-processor
interrupt (IPI) to the CPU to wake
it up

Popcorn

17

...from the trampoline

• Transition from real to protected mode, then
jump to 64-bit long mode

• Load a 64-bit identity-mapped pagetable for the
appropriate region

• Do a long jump to head_64 of the guest kernel

• Fix up the kernel’s pagetables, and setup the
identity mappings for the 2 GB of physical
address space where the kernel was loaded

• Continue to x86_64_start_kernel() to
begin executing the kernel code itself

18

Popcorn AP Boot Process

The content of this slide is taken from Ben Shelton’s MS Thesis

Popcorn

19

Popcorn Low Mem Trampoline

• We added a new
trampoline

• There are now two
trampolines

– One for APs, i.e. cores
that belongs to the same
kernel

– And another for
secondary kernels

20

Setup Popcorn trampoline..

21

Resource Configurations

• In the Popcorn utils package there are scripts and

applications to automatically (statically) subdivide

hardware resources in your machine amongst

kernels (and assists with booting them)

– generate_all.sh creates the configurations

– mklinux_boot.sh boots a secondary configuration

• mpart is the main application to divide

computational and memory resources into

partitions, optionally in a NUMA-aware fashion

22

mpart

• Gathers NUMA information from:
– /sys/devices/system/node/

– /proc/meminfo

• Outputs the kernel boot arguments
for different configurations
– Different alignments and resource

reservations

– Clustering (one kernel per NUMA-
zone)

– Partitioning (one kernel per core)

23

Masking Resources

• When Linux boots, it automatically discovers the

PCI devices present in the system

• Each kernel assumes that it has access to all of

the devices in the system unless a device is

“blacklisted” using kernel arguments

• Example syntax (from slide 15)

• pci_dev_flags=0x8086:0x10c9:b,0x102b:0x0532:b,0x1

002:0x5a10:b,0x1002:0x4390:b,0x1002:0x4396:b,0x1

002:0x4397:b,0x1002:0x4398:b,0x1002:0x4399:b

24

Partitioning and Clustering

• Logical to physical translation for CPU ID and

APIC ID to provide a contiguous range

• I/O APIC is set up to direct device interrupts to

the kernel that owns the device

• Local APICs are set up to allow inter-processor

interrupts (IPI) between kernels for

synchronization and communication

25

Interact with Secondary Kernels

• A user can interact with any of the kernels by
using any of:
– Virtual TTY

• example: $ cu –l /dev/tttyX

• X is the core ID on which the kernel is started

• Virtual TTYs appear to applications as regular TTYs

– Virtual Network Switch
• example: $ ssh 10.1.2.X

• X is the core ID plus one on which the kernel is started

• Different versions are currently available depending on the
performance and resilience needed

– Inter-Kernel Shared Memory

26

Questions? Team

www.popcornlinux.org

